Characteristics

Nominal switching distance 0.4 mm , allows flush mounting DC three-poles, push-pull output (plus- and minus-switching) High geometrical resolution capacity (module ≥ 1) Detection of approaching or passing soft iron edges

Technical Data

(Unless otherwise specified $\mathrm{U}_{\mathrm{B}}=24 \mathrm{~V}, \mathrm{~T}_{\mathrm{U}} \approx 23^{\circ} \mathrm{C}$, and $\mathrm{I}_{\mathrm{L}}=0$)
Nominal switching distance $\mathrm{s}_{\mathrm{n}} \quad 0.4 \mathrm{~mm}$
for rack rail as specified in the mounting instructions
Nominal switching distance $\mathrm{s}_{\mathrm{n}} \quad 0.2 \mathrm{~mm}$ for very little tooth depths

Duty cycle $\mathrm{v}_{\mathrm{T}} 0.5(1 \pm 25 \%)$
Phase shift $\varphi \quad 90^{\circ}\left(\pm 45^{\circ}\right)$
Operating voltage $U_{B} \quad 10 \ldots 24 \ldots 30$ VDC
Permissible ripple voltage 10%
Current consumption without load $\leq 25 \mathrm{~mA}$
Maximum load current $\leq 25 \mathrm{~mA}$
Voltage drop $\left(\mathrm{I}_{\mathrm{L}}=0\right) \leq 1.5 \mathrm{~V}$
Voltage $\operatorname{drop}\left(\mathrm{I}_{\mathrm{L}}=25 \mathrm{~mA}\right) \leq 10 \mathrm{~V}$
Output push-pull, short-circuit protection $\leq 20 \mathrm{~s}$
Operating frequency f $0 \ldots 10 \mathrm{kHz}$
Ambient temperature range $T_{U}-25 \ldots+75^{\circ} \mathrm{C}$
Reverse voltage protection yes
Connection lead connection, LiYY $3 \times 0.34 \mathrm{~mm}^{2}$
Maximum lead length $\leq 150 \mathrm{~m}$
Weight $90 \mathrm{~g}+$ weight of the lead
Design $50 \times 25 \times 12 \mathrm{~mm}$
Housing material / sensing face aluminium / brass
Protection rating according to EN 60529 IP 67

Notes

The sensors were optimised for the rack rail as specified in the mounting instructions, but may also be used for rack rails with smaller and larger tooth depth. When mounting, the housing has to be aligned vertically to the tooth flank. The switching point is not in the centre axis of the magnetoresistive switch. Keep away metal cuttings from the sensing face. Avoid operation near strong magnetic fields. The distance between the connecting lead and the control leads of the inductive loads should, as far as possible, be $\geq 30 \mathrm{~cm}$. Use a shielded lead with lead length > 10 m . Shield connection only device-sided on $\mathrm{L}-(0 \mathrm{~V})$. Magnetoresistive switches are unsuitable for detecting slots, for axial approach, and for non-magnetic materials.

Mounting Instructions

Moving sense of the rack rail

Impulse diagram

Nominal switching distance 0.4 mm with rack rail and moving sense as specified in the mounting instructions.

Duty cycle v_{T} and phase shift φ of the output signals directly depend on:

- the moving sense of the rack rail
- the switching distance
- the ratio tooth - gap
- the material of the rack rail

Deviation from the rack rail specification can change the technical data.

Certification

Complies with the standard EN 60947-5-2

Safety regulations

Connection, commissioning and maintenance may only be accomplished by specialists or instructed staff.

We are certified according to DIN EN ISO 9001 Subject to technical changes!

Wiring per sensor

For each sensor: DC voltage, three-poles, push-pull output, PVC lead connection

